| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-suc |
⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) |
| 2 |
1
|
ineq2i |
⊢ ( 𝐵 ∩ suc 𝐴 ) = ( 𝐵 ∩ ( 𝐴 ∪ { 𝐴 } ) ) |
| 3 |
|
indi |
⊢ ( 𝐵 ∩ ( 𝐴 ∪ { 𝐴 } ) ) = ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∩ { 𝐴 } ) ) |
| 4 |
|
uncom |
⊢ ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∩ { 𝐴 } ) ) = ( ( 𝐵 ∩ { 𝐴 } ) ∪ ( 𝐵 ∩ 𝐴 ) ) |
| 5 |
2 3 4
|
3eqtri |
⊢ ( 𝐵 ∩ suc 𝐴 ) = ( ( 𝐵 ∩ { 𝐴 } ) ∪ ( 𝐵 ∩ 𝐴 ) ) |
| 6 |
|
snssi |
⊢ ( 𝐴 ∈ 𝐵 → { 𝐴 } ⊆ 𝐵 ) |
| 7 |
|
sseqin2 |
⊢ ( { 𝐴 } ⊆ 𝐵 ↔ ( 𝐵 ∩ { 𝐴 } ) = { 𝐴 } ) |
| 8 |
6 7
|
sylib |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐵 ∩ { 𝐴 } ) = { 𝐴 } ) |
| 9 |
8
|
uneq1d |
⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝐵 ∩ { 𝐴 } ) ∪ ( 𝐵 ∩ 𝐴 ) ) = ( { 𝐴 } ∪ ( 𝐵 ∩ 𝐴 ) ) ) |
| 10 |
5 9
|
eqtrid |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐵 ∩ suc 𝐴 ) = ( { 𝐴 } ∪ ( 𝐵 ∩ 𝐴 ) ) ) |