Metamath Proof Explorer


Theorem acosval

Description: Value of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion acosval AarccosA=π2arcsinA

Proof

Step Hyp Ref Expression
1 fveq2 x=Aarcsinx=arcsinA
2 1 oveq2d x=Aπ2arcsinx=π2arcsinA
3 df-acos arccos=xπ2arcsinx
4 ovex π2arcsinAV
5 2 3 4 fvmpt AarccosA=π2arcsinA