Metamath Proof Explorer


Theorem acosval

Description: Value of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion acosval A arccos A = π 2 arcsin A

Proof

Step Hyp Ref Expression
1 fveq2 x = A arcsin x = arcsin A
2 1 oveq2d x = A π 2 arcsin x = π 2 arcsin A
3 df-acos arccos = x π 2 arcsin x
4 ovex π 2 arcsin A V
5 2 3 4 fvmpt A arccos A = π 2 arcsin A