Metamath Proof Explorer


Theorem ad2antll

Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 19-Oct-1999)

Ref Expression
Hypothesis ad2ant.1 φψ
Assertion ad2antll χθφψ

Proof

Step Hyp Ref Expression
1 ad2ant.1 φψ
2 1 adantl θφψ
3 2 adantl χθφψ