Metamath Proof Explorer


Theorem ad3antlr

Description: Deduction adding three conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017) (Proof shortened by Wolf Lammen, 5-Apr-2022)

Ref Expression
Hypothesis ad2ant.1 φψ
Assertion ad3antlr χφθτψ

Proof

Step Hyp Ref Expression
1 ad2ant.1 φψ
2 1 adantl χφψ
3 2 ad2antrr χφθτψ