Metamath Proof Explorer


Theorem ad4ant24

Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 14-Apr-2022)

Ref Expression
Hypothesis ad4ant2.1 φψχ
Assertion ad4ant24 θφτψχ

Proof

Step Hyp Ref Expression
1 ad4ant2.1 φψχ
2 1 adantlr φτψχ
3 2 adantlll θφτψχ