Description: Cancellation law for addition. (Contributed by NM, 30-Jul-2004) (Revised by Scott Fenton, 3-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | addcan2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnegex | |
|
2 | 1 | 3ad2ant3 | |
3 | oveq1 | |
|
4 | simpl1 | |
|
5 | simpl3 | |
|
6 | simprl | |
|
7 | 4 5 6 | addassd | |
8 | simprr | |
|
9 | 8 | oveq2d | |
10 | addrid | |
|
11 | 4 10 | syl | |
12 | 7 9 11 | 3eqtrd | |
13 | simpl2 | |
|
14 | 13 5 6 | addassd | |
15 | 8 | oveq2d | |
16 | addrid | |
|
17 | 13 16 | syl | |
18 | 14 15 17 | 3eqtrd | |
19 | 12 18 | eqeq12d | |
20 | 3 19 | imbitrid | |
21 | oveq1 | |
|
22 | 20 21 | impbid1 | |
23 | 2 22 | rexlimddv | |