Metamath Proof Explorer


Theorem addcan2

Description: Cancellation law for addition. (Contributed by NM, 30-Jul-2004) (Revised by Scott Fenton, 3-Jan-2013)

Ref Expression
Assertion addcan2 ABCA+C=B+CA=B

Proof

Step Hyp Ref Expression
1 cnegex CxC+x=0
2 1 3ad2ant3 ABCxC+x=0
3 oveq1 A+C=B+CA+C+x=B+C+x
4 simpl1 ABCxC+x=0A
5 simpl3 ABCxC+x=0C
6 simprl ABCxC+x=0x
7 4 5 6 addassd ABCxC+x=0A+C+x=A+C+x
8 simprr ABCxC+x=0C+x=0
9 8 oveq2d ABCxC+x=0A+C+x=A+0
10 addrid AA+0=A
11 4 10 syl ABCxC+x=0A+0=A
12 7 9 11 3eqtrd ABCxC+x=0A+C+x=A
13 simpl2 ABCxC+x=0B
14 13 5 6 addassd ABCxC+x=0B+C+x=B+C+x
15 8 oveq2d ABCxC+x=0B+C+x=B+0
16 addrid BB+0=B
17 13 16 syl ABCxC+x=0B+0=B
18 14 15 17 3eqtrd ABCxC+x=0B+C+x=B
19 12 18 eqeq12d ABCxC+x=0A+C+x=B+C+xA=B
20 3 19 imbitrid ABCxC+x=0A+C=B+CA=B
21 oveq1 A=BA+C=B+C
22 20 21 impbid1 ABCxC+x=0A+C=B+CA=B
23 2 22 rexlimddv ABCA+C=B+CA=B