Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Some deductions from the field axioms for complex numbers
addcld
Next ⟩
mulcld
Metamath Proof Explorer
Ascii
Unicode
Theorem
addcld
Description:
Closure law for addition.
(Contributed by
Mario Carneiro
, 27-May-2016)
Ref
Expression
Hypotheses
addcld.1
⊢
φ
→
A
∈
ℂ
addcld.2
⊢
φ
→
B
∈
ℂ
Assertion
addcld
⊢
φ
→
A
+
B
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
addcld.1
⊢
φ
→
A
∈
ℂ
2
addcld.2
⊢
φ
→
B
∈
ℂ
3
addcl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
∈
ℂ
4
1
2
3
syl2anc
⊢
φ
→
A
+
B
∈
ℂ