Metamath Proof Explorer


Theorem addcompq

Description: Addition of positive fractions is commutative. (Contributed by NM, 30-Aug-1995) (Revised by Mario Carneiro, 28-Apr-2013) (New usage is discouraged.)

Ref Expression
Assertion addcompq A+𝑝𝑸B=B+𝑝𝑸A

Proof

Step Hyp Ref Expression
1 addcompi 1stA𝑵2ndB+𝑵1stB𝑵2ndA=1stB𝑵2ndA+𝑵1stA𝑵2ndB
2 mulcompi 2ndA𝑵2ndB=2ndB𝑵2ndA
3 1 2 opeq12i 1stA𝑵2ndB+𝑵1stB𝑵2ndA2ndA𝑵2ndB=1stB𝑵2ndA+𝑵1stA𝑵2ndB2ndB𝑵2ndA
4 addpipq2 A𝑵×𝑵B𝑵×𝑵A+𝑝𝑸B=1stA𝑵2ndB+𝑵1stB𝑵2ndA2ndA𝑵2ndB
5 addpipq2 B𝑵×𝑵A𝑵×𝑵B+𝑝𝑸A=1stB𝑵2ndA+𝑵1stA𝑵2ndB2ndB𝑵2ndA
6 5 ancoms A𝑵×𝑵B𝑵×𝑵B+𝑝𝑸A=1stB𝑵2ndA+𝑵1stA𝑵2ndB2ndB𝑵2ndA
7 3 4 6 3eqtr4a A𝑵×𝑵B𝑵×𝑵A+𝑝𝑸B=B+𝑝𝑸A
8 addpqf +𝑝𝑸:𝑵×𝑵×𝑵×𝑵𝑵×𝑵
9 8 fdmi dom+𝑝𝑸=𝑵×𝑵×𝑵×𝑵
10 9 ndmovcom ¬A𝑵×𝑵B𝑵×𝑵A+𝑝𝑸B=B+𝑝𝑸A
11 7 10 pm2.61i A+𝑝𝑸B=B+𝑝𝑸A