Metamath Proof Explorer


Theorem addrfv

Description: Vector addition at a value. The operation takes each vector A and B and forms a new vector whose values are the sum of each of the values of A and B . (Contributed by Andrew Salmon, 27-Jan-2012)

Ref Expression
Assertion addrfv AEBDCA+rBC=AC+BC

Proof

Step Hyp Ref Expression
1 addrval AEBDA+rB=xAx+Bx
2 1 fveq1d AEBDA+rBC=xAx+BxC
3 fveq2 x=CAx=AC
4 fveq2 x=CBx=BC
5 3 4 oveq12d x=CAx+Bx=AC+BC
6 eqid xAx+Bx=xAx+Bx
7 ovex AC+BCV
8 5 6 7 fvmpt CxAx+BxC=AC+BC
9 2 8 sylan9eq AEBDCA+rBC=AC+BC
10 9 3impa AEBDCA+rBC=AC+BC