Metamath Proof Explorer


Theorem subrfv

Description: Vector subtraction at a value. (Contributed by Andrew Salmon, 27-Jan-2012)

Ref Expression
Assertion subrfv A E B D C A - r B C = A C B C

Proof

Step Hyp Ref Expression
1 subrval A E B D A - r B = x A x B x
2 1 fveq1d A E B D A - r B C = x A x B x C
3 fveq2 x = C A x = A C
4 fveq2 x = C B x = B C
5 3 4 oveq12d x = C A x B x = A C B C
6 eqid x A x B x = x A x B x
7 ovex A C B C V
8 5 6 7 fvmpt C x A x B x C = A C B C
9 2 8 sylan9eq A E B D C A - r B C = A C B C
10 9 3impa A E B D C A - r B C = A C B C