Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Andrew Salmon
Geometry
subrfv
Next ⟩
mulvfv
Metamath Proof Explorer
Ascii
Unicode
Theorem
subrfv
Description:
Vector subtraction at a value.
(Contributed by
Andrew Salmon
, 27-Jan-2012)
Ref
Expression
Assertion
subrfv
⊢
A
∈
E
∧
B
∈
D
∧
C
∈
ℝ
→
A
-
r
B
⁡
C
=
A
⁡
C
−
B
⁡
C
Proof
Step
Hyp
Ref
Expression
1
subrval
⊢
A
∈
E
∧
B
∈
D
→
A
-
r
B
=
x
∈
ℝ
⟼
A
⁡
x
−
B
⁡
x
2
1
fveq1d
⊢
A
∈
E
∧
B
∈
D
→
A
-
r
B
⁡
C
=
x
∈
ℝ
⟼
A
⁡
x
−
B
⁡
x
⁡
C
3
fveq2
⊢
x
=
C
→
A
⁡
x
=
A
⁡
C
4
fveq2
⊢
x
=
C
→
B
⁡
x
=
B
⁡
C
5
3
4
oveq12d
⊢
x
=
C
→
A
⁡
x
−
B
⁡
x
=
A
⁡
C
−
B
⁡
C
6
eqid
⊢
x
∈
ℝ
⟼
A
⁡
x
−
B
⁡
x
=
x
∈
ℝ
⟼
A
⁡
x
−
B
⁡
x
7
ovex
⊢
A
⁡
C
−
B
⁡
C
∈
V
8
5
6
7
fvmpt
⊢
C
∈
ℝ
→
x
∈
ℝ
⟼
A
⁡
x
−
B
⁡
x
⁡
C
=
A
⁡
C
−
B
⁡
C
9
2
8
sylan9eq
⊢
A
∈
E
∧
B
∈
D
∧
C
∈
ℝ
→
A
-
r
B
⁡
C
=
A
⁡
C
−
B
⁡
C
10
9
3impa
⊢
A
∈
E
∧
B
∈
D
∧
C
∈
ℝ
→
A
-
r
B
⁡
C
=
A
⁡
C
−
B
⁡
C