Step |
Hyp |
Ref |
Expression |
1 |
|
subrval |
|- ( ( A e. E /\ B e. D ) -> ( A -r B ) = ( x e. RR |-> ( ( A ` x ) - ( B ` x ) ) ) ) |
2 |
1
|
fveq1d |
|- ( ( A e. E /\ B e. D ) -> ( ( A -r B ) ` C ) = ( ( x e. RR |-> ( ( A ` x ) - ( B ` x ) ) ) ` C ) ) |
3 |
|
fveq2 |
|- ( x = C -> ( A ` x ) = ( A ` C ) ) |
4 |
|
fveq2 |
|- ( x = C -> ( B ` x ) = ( B ` C ) ) |
5 |
3 4
|
oveq12d |
|- ( x = C -> ( ( A ` x ) - ( B ` x ) ) = ( ( A ` C ) - ( B ` C ) ) ) |
6 |
|
eqid |
|- ( x e. RR |-> ( ( A ` x ) - ( B ` x ) ) ) = ( x e. RR |-> ( ( A ` x ) - ( B ` x ) ) ) |
7 |
|
ovex |
|- ( ( A ` C ) - ( B ` C ) ) e. _V |
8 |
5 6 7
|
fvmpt |
|- ( C e. RR -> ( ( x e. RR |-> ( ( A ` x ) - ( B ` x ) ) ) ` C ) = ( ( A ` C ) - ( B ` C ) ) ) |
9 |
2 8
|
sylan9eq |
|- ( ( ( A e. E /\ B e. D ) /\ C e. RR ) -> ( ( A -r B ) ` C ) = ( ( A ` C ) - ( B ` C ) ) ) |
10 |
9
|
3impa |
|- ( ( A e. E /\ B e. D /\ C e. RR ) -> ( ( A -r B ) ` C ) = ( ( A ` C ) - ( B ` C ) ) ) |