| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulvval |
|- ( ( A e. E /\ B e. D ) -> ( A .v B ) = ( x e. RR |-> ( A x. ( B ` x ) ) ) ) |
| 2 |
1
|
fveq1d |
|- ( ( A e. E /\ B e. D ) -> ( ( A .v B ) ` C ) = ( ( x e. RR |-> ( A x. ( B ` x ) ) ) ` C ) ) |
| 3 |
|
fveq2 |
|- ( x = C -> ( B ` x ) = ( B ` C ) ) |
| 4 |
3
|
oveq2d |
|- ( x = C -> ( A x. ( B ` x ) ) = ( A x. ( B ` C ) ) ) |
| 5 |
|
eqid |
|- ( x e. RR |-> ( A x. ( B ` x ) ) ) = ( x e. RR |-> ( A x. ( B ` x ) ) ) |
| 6 |
|
ovex |
|- ( A x. ( B ` C ) ) e. _V |
| 7 |
4 5 6
|
fvmpt |
|- ( C e. RR -> ( ( x e. RR |-> ( A x. ( B ` x ) ) ) ` C ) = ( A x. ( B ` C ) ) ) |
| 8 |
2 7
|
sylan9eq |
|- ( ( ( A e. E /\ B e. D ) /\ C e. RR ) -> ( ( A .v B ) ` C ) = ( A x. ( B ` C ) ) ) |
| 9 |
8
|
3impa |
|- ( ( A e. E /\ B e. D /\ C e. RR ) -> ( ( A .v B ) ` C ) = ( A x. ( B ` C ) ) ) |