Metamath Proof Explorer


Theorem mulvfv

Description: Scalar multiplication at a value. (Contributed by Andrew Salmon, 27-Jan-2012)

Ref Expression
Assertion mulvfv ( ( 𝐴𝐸𝐵𝐷𝐶 ∈ ℝ ) → ( ( 𝐴 .𝑣 𝐵 ) ‘ 𝐶 ) = ( 𝐴 · ( 𝐵𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 mulvval ( ( 𝐴𝐸𝐵𝐷 ) → ( 𝐴 .𝑣 𝐵 ) = ( 𝑥 ∈ ℝ ↦ ( 𝐴 · ( 𝐵𝑥 ) ) ) )
2 1 fveq1d ( ( 𝐴𝐸𝐵𝐷 ) → ( ( 𝐴 .𝑣 𝐵 ) ‘ 𝐶 ) = ( ( 𝑥 ∈ ℝ ↦ ( 𝐴 · ( 𝐵𝑥 ) ) ) ‘ 𝐶 ) )
3 fveq2 ( 𝑥 = 𝐶 → ( 𝐵𝑥 ) = ( 𝐵𝐶 ) )
4 3 oveq2d ( 𝑥 = 𝐶 → ( 𝐴 · ( 𝐵𝑥 ) ) = ( 𝐴 · ( 𝐵𝐶 ) ) )
5 eqid ( 𝑥 ∈ ℝ ↦ ( 𝐴 · ( 𝐵𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝐴 · ( 𝐵𝑥 ) ) )
6 ovex ( 𝐴 · ( 𝐵𝐶 ) ) ∈ V
7 4 5 6 fvmpt ( 𝐶 ∈ ℝ → ( ( 𝑥 ∈ ℝ ↦ ( 𝐴 · ( 𝐵𝑥 ) ) ) ‘ 𝐶 ) = ( 𝐴 · ( 𝐵𝐶 ) ) )
8 2 7 sylan9eq ( ( ( 𝐴𝐸𝐵𝐷 ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 .𝑣 𝐵 ) ‘ 𝐶 ) = ( 𝐴 · ( 𝐵𝐶 ) ) )
9 8 3impa ( ( 𝐴𝐸𝐵𝐷𝐶 ∈ ℝ ) → ( ( 𝐴 .𝑣 𝐵 ) ‘ 𝐶 ) = ( 𝐴 · ( 𝐵𝐶 ) ) )