Metamath Proof Explorer


Theorem mulvfv

Description: Scalar multiplication at a value. (Contributed by Andrew Salmon, 27-Jan-2012)

Ref Expression
Assertion mulvfv A E B D C A v B C = A B C

Proof

Step Hyp Ref Expression
1 mulvval A E B D A v B = x A B x
2 1 fveq1d A E B D A v B C = x A B x C
3 fveq2 x = C B x = B C
4 3 oveq2d x = C A B x = A B C
5 eqid x A B x = x A B x
6 ovex A B C V
7 4 5 6 fvmpt C x A B x C = A B C
8 2 7 sylan9eq A E B D C A v B C = A B C
9 8 3impa A E B D C A v B C = A B C