Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Andrew Salmon
Geometry
mulvfv
Next ⟩
addrfn
Metamath Proof Explorer
Ascii
Unicode
Theorem
mulvfv
Description:
Scalar multiplication at a value.
(Contributed by
Andrew Salmon
, 27-Jan-2012)
Ref
Expression
Assertion
mulvfv
⊢
A
∈
E
∧
B
∈
D
∧
C
∈
ℝ
→
A
⋅
v
B
⁡
C
=
A
⁢
B
⁡
C
Proof
Step
Hyp
Ref
Expression
1
mulvval
⊢
A
∈
E
∧
B
∈
D
→
A
⋅
v
B
=
x
∈
ℝ
⟼
A
⁢
B
⁡
x
2
1
fveq1d
⊢
A
∈
E
∧
B
∈
D
→
A
⋅
v
B
⁡
C
=
x
∈
ℝ
⟼
A
⁢
B
⁡
x
⁡
C
3
fveq2
⊢
x
=
C
→
B
⁡
x
=
B
⁡
C
4
3
oveq2d
⊢
x
=
C
→
A
⁢
B
⁡
x
=
A
⁢
B
⁡
C
5
eqid
⊢
x
∈
ℝ
⟼
A
⁢
B
⁡
x
=
x
∈
ℝ
⟼
A
⁢
B
⁡
x
6
ovex
⊢
A
⁢
B
⁡
C
∈
V
7
4
5
6
fvmpt
⊢
C
∈
ℝ
→
x
∈
ℝ
⟼
A
⁢
B
⁡
x
⁡
C
=
A
⁢
B
⁡
C
8
2
7
sylan9eq
⊢
A
∈
E
∧
B
∈
D
∧
C
∈
ℝ
→
A
⋅
v
B
⁡
C
=
A
⁢
B
⁡
C
9
8
3impa
⊢
A
∈
E
∧
B
∈
D
∧
C
∈
ℝ
→
A
⋅
v
B
⁡
C
=
A
⁢
B
⁡
C