Metamath Proof Explorer


Theorem adh-minimp-imim1

Description: Derivation of imim1 ("left antimonotonicity of implication", theorem *2.06 of WhiteheadRussell p. 100) from adh-minimp and ax-mp . Polish prefix notation: CCpqCCqrCpr . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minimp-imim1 φ ψ ψ χ φ χ

Proof

Step Hyp Ref Expression
1 adh-minimp-sylsimp θ φ ψ χ φ χ ψ χ φ χ
2 adh-minimp-jarr-imim1-ax2c-lem1 φ ψ θ φ ψ χ φ χ
3 adh-minimp-jarr-imim1-ax2c-lem1 φ ψ θ φ ψ χ φ χ ρ φ ψ θ φ ψ χ φ χ ψ χ φ χ φ ψ ψ χ φ χ
4 2 3 ax-mp ρ φ ψ θ φ ψ χ φ χ ψ χ φ χ φ ψ ψ χ φ χ
5 adh-minimp-sylsimp ρ φ ψ θ φ ψ χ φ χ ψ χ φ χ φ ψ ψ χ φ χ θ φ ψ χ φ χ ψ χ φ χ φ ψ ψ χ φ χ
6 4 5 ax-mp θ φ ψ χ φ χ ψ χ φ χ φ ψ ψ χ φ χ
7 1 6 ax-mp φ ψ ψ χ φ χ