Metamath Proof Explorer


Theorem adj0

Description: Adjoint of the zero operator. (Contributed by NM, 20-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adj0 adjh0hop=0hop

Proof

Step Hyp Ref Expression
1 ho0f 0hop:
2 ho0val x0hopx=0
3 2 oveq1d x0hopxihy=0ihy
4 hi01 y0ihy=0
5 3 4 sylan9eq xy0hopxihy=0
6 ho0val y0hopy=0
7 6 oveq2d yxih0hopy=xih0
8 hi02 xxih0=0
9 7 8 sylan9eqr xyxih0hopy=0
10 5 9 eqtr4d xy0hopxihy=xih0hopy
11 10 rgen2 xy0hopxihy=xih0hopy
12 adjeq 0hop:0hop:xy0hopxihy=xih0hopyadjh0hop=0hop
13 1 1 11 12 mp3an adjh0hop=0hop