Metamath Proof Explorer


Theorem afvnufveq

Description: The value of the alternative function at a set as argument equals the function's value at this argument. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvnufveq F ''' A V F ''' A = F A

Proof

Step Hyp Ref Expression
1 afvfundmfveq F defAt A F ''' A = F A
2 afvnfundmuv ¬ F defAt A F ''' A = V
3 1 2 nsyl5 ¬ F ''' A = F A F ''' A = V
4 3 necon1ai F ''' A V F ''' A = F A