Metamath Proof Explorer


Theorem afvvfunressn

Description: If the function value of a class for an argument is a set, the class restricted to the singleton of the argument is a function. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvvfunressn F ''' A B Fun F A

Proof

Step Hyp Ref Expression
1 nfunsnafv ¬ Fun F A F ''' A = V
2 nvelim F ''' A = V ¬ F ''' A B
3 1 2 syl ¬ Fun F A ¬ F ''' A B
4 3 con4i F ''' A B Fun F A