Metamath Proof Explorer


Theorem aiotaexb

Description: The alternate iota over a wff ph is a set iff there is a unique value x satisfying ph . (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion aiotaexb ∃!xφιV

Proof

Step Hyp Ref Expression
1 intexab yx|φ=yy|x|φ=yV
2 euabsn2 ∃!xφyx|φ=y
3 df-aiota ι=y|x|φ=y
4 3 eleq1i ιVy|x|φ=yV
5 1 2 4 3bitr4i ∃!xφιV