Metamath Proof Explorer


Theorem aleph1min

Description: ( aleph1o ) is the least uncountable ordinal. (Contributed by RP, 18-Nov-2023)

Ref Expression
Assertion aleph1min 1𝑜=xOn|ωx

Proof

Step Hyp Ref Expression
1 df-1o 1𝑜=suc
2 1 fveq2i 1𝑜=suc
3 0elon On
4 alephsuc Onsuc=har
5 3 4 ax-mp suc=har
6 aleph0 =ω
7 6 fveq2i har=harω
8 5 7 eqtri suc=harω
9 omelon ωOn
10 onenon ωOnωdomcard
11 9 10 ax-mp ωdomcard
12 harval2 ωdomcardharω=xOn|ωx
13 11 12 ax-mp harω=xOn|ωx
14 8 13 eqtri suc=xOn|ωx
15 2 14 eqtri 1𝑜=xOn|ωx