Metamath Proof Explorer


Theorem alephsucdom

Description: A set dominated by an aleph is strictly dominated by its successor aleph and vice-versa. (Contributed by NM, 3-Nov-2003) (Revised by Mario Carneiro, 2-Feb-2013)

Ref Expression
Assertion alephsucdom BOnABAsucB

Proof

Step Hyp Ref Expression
1 alephordilem1 BOnBsucB
2 domsdomtr ABBsucBAsucB
3 2 ex ABBsucBAsucB
4 1 3 syl5com BOnABAsucB
5 sdomdom AsucBAsucB
6 alephon sucBOn
7 ondomen sucBOnAsucBAdomcard
8 6 7 mpan AsucBAdomcard
9 cardid2 AdomcardcardAA
10 5 8 9 3syl AsucBcardAA
11 10 ensymd AsucBAcardA
12 alephnbtwn2 ¬BcardAcardAsucB
13 12 imnani BcardA¬cardAsucB
14 ensdomtr cardAAAsucBcardAsucB
15 10 14 mpancom AsucBcardAsucB
16 13 15 nsyl3 AsucB¬BcardA
17 cardon cardAOn
18 alephon BOn
19 domtriord cardAOnBOncardAB¬BcardA
20 17 18 19 mp2an cardAB¬BcardA
21 16 20 sylibr AsucBcardAB
22 endomtr AcardAcardABAB
23 11 21 22 syl2anc AsucBAB
24 4 23 impbid1 BOnABAsucB