Description: A set dominated by an aleph is strictly dominated by its successor aleph and vice-versa. (Contributed by NM, 3-Nov-2003) (Revised by Mario Carneiro, 2-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | alephsucdom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephordilem1 | |
|
2 | domsdomtr | |
|
3 | 2 | ex | |
4 | 1 3 | syl5com | |
5 | sdomdom | |
|
6 | alephon | |
|
7 | ondomen | |
|
8 | 6 7 | mpan | |
9 | cardid2 | |
|
10 | 5 8 9 | 3syl | |
11 | 10 | ensymd | |
12 | alephnbtwn2 | |
|
13 | 12 | imnani | |
14 | ensdomtr | |
|
15 | 10 14 | mpancom | |
16 | 13 15 | nsyl3 | |
17 | cardon | |
|
18 | alephon | |
|
19 | domtriord | |
|
20 | 17 18 19 | mp2an | |
21 | 16 20 | sylibr | |
22 | endomtr | |
|
23 | 11 21 22 | syl2anc | |
24 | 4 23 | impbid1 | |