Metamath Proof Explorer


Theorem alephsuc2

Description: An alternate representation of a successor aleph. The aleph function is the function obtained from the hartogs function by transfinite recursion, starting from _om . Using this theorem we could define the aleph function with { z e. On | z ~<_ x } in place of |^| { z e. On | x ~< z } in df-aleph . (Contributed by NM, 3-Nov-2003) (Revised by Mario Carneiro, 2-Feb-2013)

Ref Expression
Assertion alephsuc2 AOnsucA=xOn|xA

Proof

Step Hyp Ref Expression
1 alephon sucAOn
2 1 oneli ysucAyOn
3 alephcard cardsucA=sucA
4 iscard cardsucA=sucAsucAOnysucAysucA
5 3 4 mpbi sucAOnysucAysucA
6 5 simpri ysucAysucA
7 6 rspec ysucAysucA
8 2 7 jca ysucAyOnysucA
9 sdomel yOnsucAOnysucAysucA
10 1 9 mpan2 yOnysucAysucA
11 10 imp yOnysucAysucA
12 8 11 impbii ysucAyOnysucA
13 breq1 x=yxsucAysucA
14 13 elrab yxOn|xsucAyOnysucA
15 12 14 bitr4i ysucAyxOn|xsucA
16 15 eqriv sucA=xOn|xsucA
17 alephsucdom AOnxAxsucA
18 17 rabbidv AOnxOn|xA=xOn|xsucA
19 16 18 eqtr4id AOnsucA=xOn|xA