| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alephon |
⊢ ( ℵ ‘ suc 𝐴 ) ∈ On |
| 2 |
1
|
oneli |
⊢ ( 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) → 𝑦 ∈ On ) |
| 3 |
|
alephcard |
⊢ ( card ‘ ( ℵ ‘ suc 𝐴 ) ) = ( ℵ ‘ suc 𝐴 ) |
| 4 |
|
iscard |
⊢ ( ( card ‘ ( ℵ ‘ suc 𝐴 ) ) = ( ℵ ‘ suc 𝐴 ) ↔ ( ( ℵ ‘ suc 𝐴 ) ∈ On ∧ ∀ 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) ) ) |
| 5 |
3 4
|
mpbi |
⊢ ( ( ℵ ‘ suc 𝐴 ) ∈ On ∧ ∀ 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) ) |
| 6 |
5
|
simpri |
⊢ ∀ 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) |
| 7 |
6
|
rspec |
⊢ ( 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) → 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) ) |
| 8 |
2 7
|
jca |
⊢ ( 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) → ( 𝑦 ∈ On ∧ 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) ) ) |
| 9 |
|
sdomel |
⊢ ( ( 𝑦 ∈ On ∧ ( ℵ ‘ suc 𝐴 ) ∈ On ) → ( 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) → 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) ) ) |
| 10 |
1 9
|
mpan2 |
⊢ ( 𝑦 ∈ On → ( 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) → 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) ) ) |
| 11 |
10
|
imp |
⊢ ( ( 𝑦 ∈ On ∧ 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) ) → 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) ) |
| 12 |
8 11
|
impbii |
⊢ ( 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) ↔ ( 𝑦 ∈ On ∧ 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) ) ) |
| 13 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≺ ( ℵ ‘ suc 𝐴 ) ↔ 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) ) ) |
| 14 |
13
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≺ ( ℵ ‘ suc 𝐴 ) } ↔ ( 𝑦 ∈ On ∧ 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) ) ) |
| 15 |
12 14
|
bitr4i |
⊢ ( 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) ↔ 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≺ ( ℵ ‘ suc 𝐴 ) } ) |
| 16 |
15
|
eqriv |
⊢ ( ℵ ‘ suc 𝐴 ) = { 𝑥 ∈ On ∣ 𝑥 ≺ ( ℵ ‘ suc 𝐴 ) } |
| 17 |
|
alephsucdom |
⊢ ( 𝐴 ∈ On → ( 𝑥 ≼ ( ℵ ‘ 𝐴 ) ↔ 𝑥 ≺ ( ℵ ‘ suc 𝐴 ) ) ) |
| 18 |
17
|
rabbidv |
⊢ ( 𝐴 ∈ On → { 𝑥 ∈ On ∣ 𝑥 ≼ ( ℵ ‘ 𝐴 ) } = { 𝑥 ∈ On ∣ 𝑥 ≺ ( ℵ ‘ suc 𝐴 ) } ) |
| 19 |
16 18
|
eqtr4id |
⊢ ( 𝐴 ∈ On → ( ℵ ‘ suc 𝐴 ) = { 𝑥 ∈ On ∣ 𝑥 ≼ ( ℵ ‘ 𝐴 ) } ) |