Metamath Proof Explorer


Theorem aleximi

Description: A variant of al2imi : instead of applying A. x quantifiers to the final implication, replace them with E. x . A shorter proof is possible using nfa1 , sps and eximd , but it depends on more axioms. (Contributed by Wolf Lammen, 18-Aug-2019)

Ref Expression
Hypothesis aleximi.1 φ ψ χ
Assertion aleximi x φ x ψ x χ

Proof

Step Hyp Ref Expression
1 aleximi.1 φ ψ χ
2 1 con3d φ ¬ χ ¬ ψ
3 2 al2imi x φ x ¬ χ x ¬ ψ
4 alnex x ¬ χ ¬ x χ
5 alnex x ¬ ψ ¬ x ψ
6 3 4 5 3imtr3g x φ ¬ x χ ¬ x ψ
7 6 con4d x φ x ψ x χ