Metamath Proof Explorer


Theorem algstr

Description: Lemma to shorten proofs of algbase through algvsca . (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis algpart.a A=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙
Assertion algstr AStruct16

Proof

Step Hyp Ref Expression
1 algpart.a A=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙
2 eqid BasendxB+ndx+˙ndx×˙=BasendxB+ndx+˙ndx×˙
3 2 rngstr BasendxB+ndx+˙ndx×˙Struct13
4 5nn 5
5 scandx Scalarndx=5
6 5lt6 5<6
7 6nn 6
8 vscandx ndx=6
9 4 5 6 7 8 strle2 ScalarndxSndx·˙Struct56
10 3lt5 3<5
11 3 9 10 strleun BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙Struct16
12 1 11 eqbrtri AStruct16