Metamath Proof Explorer


Theorem algvsca

Description: The scalar product operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis algpart.a A = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙
Assertion algvsca · ˙ V · ˙ = A

Proof

Step Hyp Ref Expression
1 algpart.a A = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙
2 1 algstr A Struct 1 6
3 vscaid 𝑠 = Slot ndx
4 snsspr2 ndx · ˙ Scalar ndx S ndx · ˙
5 ssun2 Scalar ndx S ndx · ˙ Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙
6 5 1 sseqtrri Scalar ndx S ndx · ˙ A
7 4 6 sstri ndx · ˙ A
8 2 3 7 strfv · ˙ V · ˙ = A