Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Alternate ordered pairs
altopthg
Next ⟩
altopthbg
Metamath Proof Explorer
Ascii
Unicode
Theorem
altopthg
Description:
Alternate ordered pair theorem.
(Contributed by
Scott Fenton
, 22-Mar-2012)
Ref
Expression
Assertion
altopthg
⊢
A
∈
V
∧
B
∈
W
→
A
B
=
C
D
↔
A
=
C
∧
B
=
D
Proof
Step
Hyp
Ref
Expression
1
altopthsn
⊢
A
B
=
C
D
↔
A
=
C
∧
B
=
D
2
sneqbg
⊢
A
∈
V
→
A
=
C
↔
A
=
C
3
sneqbg
⊢
B
∈
W
→
B
=
D
↔
B
=
D
4
2
3
bi2anan9
⊢
A
∈
V
∧
B
∈
W
→
A
=
C
∧
B
=
D
↔
A
=
C
∧
B
=
D
5
1
4
syl5bb
⊢
A
∈
V
∧
B
∈
W
→
A
B
=
C
D
↔
A
=
C
∧
B
=
D