Metamath Proof Explorer
		
		
		
		Description:  Adding biconditional when antecedents are conjuncted.  (Contributed by metakunt, 16-Apr-2024)  (Proof shortened by Wolf Lammen, 7-May-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | anbiim.1 |  | 
					
						|  |  | anbiim.2 |  | 
				
					|  | Assertion | anbiim |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | anbiim.1 |  | 
						
							| 2 |  | anbiim.2 |  | 
						
							| 3 | 1 | adantr |  | 
						
							| 4 | 2 | adantl |  | 
						
							| 5 | 3 4 | impbid |  |