Metamath Proof Explorer


Theorem ancom2s

Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006) (Proof shortened by Wolf Lammen, 24-Nov-2012)

Ref Expression
Hypothesis an12s.1 φψχθ
Assertion ancom2s φχψθ

Proof

Step Hyp Ref Expression
1 an12s.1 φψχθ
2 pm3.22 χψψχ
3 2 1 sylan2 φχψθ