Metamath Proof Explorer


Theorem aovovn0oveq

Description: If the operation's value at an argument is not the empty set, it equals the value of the alternative operation at this argument. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion aovovn0oveq AFBAFB=AFB

Proof

Step Hyp Ref Expression
1 df-ov AFB=FAB
2 1 neeq1i AFBFAB
3 afvfvn0fveq FABF'''AB=FAB
4 df-aov AFB=F'''AB
5 3 4 1 3eqtr4g FABAFB=AFB
6 2 5 sylbi AFBAFB=AFB