Description: A single axiom for propositional calculus discovered by Ken Harris and Branden Fitelson. See: Fitelson,Some recent results in algebra and logical calculi obtained using automated reasoning, 2003 (axiom HF1 on slide 8). (Contributed by Anthony Hart, 14-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | arg-ax | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nan | |
|
2 | pm4.57 | |
|
3 | orel2 | |
|
4 | 3 | com12 | |
5 | simpr | |
|
6 | 5 | a1i | |
7 | 4 6 | jad | |
8 | 7 | com12 | |
9 | pm3.45 | |
|
10 | pm3.45 | |
|
11 | 9 10 | anim12i | |
12 | jaob | |
|
13 | jaob | |
|
14 | 11 12 13 | 3imtr4i | |
15 | 8 14 | syl | |
16 | pm3.22 | |
|
17 | 15 16 | syl6 | |
18 | 2 17 | biimtrid | |
19 | 18 | con1d | |
20 | df-nan | |
|
21 | 20 | biimpri | |
22 | df-nan | |
|
23 | 22 | biimpri | |
24 | 21 23 | anim12i | |
25 | 19 24 | syl6 | |
26 | 1 25 | biimtrid | |
27 | nannan | |
|
28 | nannan | |
|
29 | 26 27 28 | 3imtr4i | |
30 | 29 | ancli | |
31 | nannan | |
|
32 | 30 31 | mpbir | |