Metamath Proof Explorer


Theorem asinval

Description: Value of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion asinval AarcsinA=ilogiA+1A2

Proof

Step Hyp Ref Expression
1 oveq2 x=Aix=iA
2 oveq1 x=Ax2=A2
3 2 oveq2d x=A1x2=1A2
4 3 fveq2d x=A1x2=1A2
5 1 4 oveq12d x=Aix+1x2=iA+1A2
6 5 fveq2d x=Alogix+1x2=logiA+1A2
7 6 oveq2d x=Ailogix+1x2=ilogiA+1A2
8 df-asin arcsin=xilogix+1x2
9 ovex ilogiA+1A2V
10 7 8 9 fvmpt AarcsinA=ilogiA+1A2