Metamath Proof Explorer


Theorem assaring

Description: An associative algebra is a ring. (Contributed by Mario Carneiro, 5-Dec-2014)

Ref Expression
Assertion assaring WAssAlgWRing

Proof

Step Hyp Ref Expression
1 eqid BaseW=BaseW
2 eqid ScalarW=ScalarW
3 eqid BaseScalarW=BaseScalarW
4 eqid W=W
5 eqid W=W
6 1 2 3 4 5 isassa WAssAlgWLModWRingzBaseScalarWxBaseWyBaseWzWxWy=zWxWyxWzWy=zWxWy
7 6 simplbi WAssAlgWLModWRing
8 7 simprd WAssAlgWRing