Metamath Proof Explorer


Theorem atl0le

Description: Orthoposet zero is less than or equal to any element. ( ch0le analog.) (Contributed by NM, 12-Oct-2011)

Ref Expression
Hypotheses atl0le.b B=BaseK
atl0le.l ˙=K
atl0le.z 0˙=0.K
Assertion atl0le KAtLatXB0˙˙X

Proof

Step Hyp Ref Expression
1 atl0le.b B=BaseK
2 atl0le.l ˙=K
3 atl0le.z 0˙=0.K
4 eqid glbK=glbK
5 simpl KAtLatXBKAtLat
6 simpr KAtLatXBXB
7 eqid lubK=lubK
8 1 7 4 atl0dm KAtLatBdomglbK
9 8 adantr KAtLatXBBdomglbK
10 1 4 2 3 5 6 9 p0le KAtLatXB0˙˙X