Metamath Proof Explorer
Description: Axiom of singleton. (Contributed by BJ, 12-Jan-2025)
|
|
Ref |
Expression |
|
Assertion |
ax-bj-sn |
|
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
vx |
|
| 1 |
|
vy |
|
| 2 |
|
vz |
|
| 3 |
2
|
cv |
|
| 4 |
1
|
cv |
|
| 5 |
3 4
|
wcel |
|
| 6 |
0
|
cv |
|
| 7 |
3 6
|
wceq |
|
| 8 |
5 7
|
wb |
|
| 9 |
8 2
|
wal |
|
| 10 |
9 1
|
wex |
|
| 11 |
10 0
|
wal |
|