Metamath Proof Explorer


Axiom ax-hgprmladder

Description: There is a partition ("ladder") of primes from 7 to 8.8 x 10^30 with parts ("rungs") having lengths of at least 4 and at most N - 4, see section 1.2.2 in Helfgott p. 4. Temporarily provided as "axiom". (Contributed by AV, 3-Aug-2020) (Revised by AV, 9-Sep-2021)

Ref Expression
Assertion ax-hgprmladder d 3 f RePart d f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i

Detailed syntax breakdown

Step Hyp Ref Expression
0 vd setvar d
1 cuz class
2 c3 class 3
3 2 1 cfv class 3
4 vf setvar f
5 ciccp class RePart
6 0 cv setvar d
7 6 5 cfv class RePart d
8 4 cv setvar f
9 cc0 class 0
10 9 8 cfv class f 0
11 c7 class 7
12 10 11 wceq wff f 0 = 7
13 c1 class 1
14 13 8 cfv class f 1
15 13 2 cdc class 13
16 14 15 wceq wff f 1 = 13
17 6 8 cfv class f d
18 c8 class 8
19 c9 class 9
20 18 19 cdc class 89
21 cmul class ×
22 13 9 cdc class 10
23 cexp class ^
24 c2 class 2
25 24 19 cdc class 29
26 22 25 23 co class 10 29
27 20 26 21 co class 89 10 29
28 17 27 wceq wff f d = 89 10 29
29 12 16 28 w3a wff f 0 = 7 f 1 = 13 f d = 89 10 29
30 vi setvar i
31 cfzo class ..^
32 9 6 31 co class 0 ..^ d
33 30 cv setvar i
34 33 8 cfv class f i
35 cprime class
36 24 csn class 2
37 35 36 cdif class 2
38 34 37 wcel wff f i 2
39 caddc class +
40 33 13 39 co class i + 1
41 40 8 cfv class f i + 1
42 cmin class
43 41 34 42 co class f i + 1 f i
44 clt class <
45 c4 class 4
46 13 18 cdc class 18
47 22 46 23 co class 10 18
48 45 47 21 co class 4 10 18
49 48 45 42 co class 4 10 18 4
50 43 49 44 wbr wff f i + 1 f i < 4 10 18 4
51 45 43 44 wbr wff 4 < f i + 1 f i
52 38 50 51 w3a wff f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i
53 52 30 32 wral wff i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i
54 29 53 wa wff f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i
55 54 4 7 wrex wff f RePart d f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i
56 55 0 3 wrex wff d 3 f RePart d f 0 = 7 f 1 = 13 f d = 89 10 29 i 0 ..^ d f i 2 f i + 1 f i < 4 10 18 4 4 < f i + 1 f i