Metamath Proof Explorer


Axiom ax-pow

Description: Axiom of Power Sets. An axiom of Zermelo-Fraenkel set theory. It states that a set y exists that includes the power set of a given set x i.e. contains every subset of x . The variant axpow2 uses explicit subset notation. A version using class notation is pwex . (Contributed by NM, 21-Jun-1993)

Ref Expression
Assertion ax-pow yzwwzwxzy

Detailed syntax breakdown

Step Hyp Ref Expression
0 vy setvary
1 vz setvarz
2 vw setvarw
3 2 cv setvarw
4 1 cv setvarz
5 3 4 wcel wffwz
6 vx setvarx
7 6 cv setvarx
8 3 7 wcel wffwx
9 5 8 wi wffwzwx
10 9 2 wal wffwwzwx
11 0 cv setvary
12 4 11 wcel wffzy
13 10 12 wi wffwwzwxzy
14 13 1 wal wffzwwzwxzy
15 14 0 wex wffyzwwzwxzy