Metamath Proof Explorer


Axiom ax-rrecex

Description: Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, justified by Theorem axrrecex . (Contributed by Eric Schmidt, 11-Apr-2007)

Ref Expression
Assertion ax-rrecex AA0xAx=1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 cr class
2 0 1 wcel wffA
3 cc0 class0
4 0 3 wne wffA0
5 2 4 wa wffAA0
6 vx setvarx
7 cmul class×
8 6 cv setvarx
9 0 8 7 co classAx
10 c1 class1
11 9 10 wceq wffAx=1
12 11 6 1 wrex wffxAx=1
13 5 12 wi wffAA0xAx=1