Database
REAL AND COMPLEX NUMBERS
Construction and axiomatization of real and complex numbers
Real and complex number postulates restated as axioms
ax-rrecex
Metamath Proof Explorer
Description: Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real
and complex numbers, justified by Theorem axrrecex . (Contributed by Eric Schmidt , 11-Apr-2007)
Ref
Expression
Assertion
ax-rrecex
⊢ A ∈ ℝ ∧ A ≠ 0 → ∃ x ∈ ℝ A ⁢ x = 1
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cA
class A
1
cr
class ℝ
2
0 1
wcel
wff A ∈ ℝ
3
cc0
class 0
4
0 3
wne
wff A ≠ 0
5
2 4
wa
wff A ∈ ℝ ∧ A ≠ 0
6
vx
setvar x
7
cmul
class ×
8
6
cv
setvar x
9
0 8 7
co
class A ⁢ x
10
c1
class 1
11
9 10
wceq
wff A ⁢ x = 1
12
11 6 1
wrex
wff ∃ x ∈ ℝ A ⁢ x = 1
13
5 12
wi
wff A ∈ ℝ ∧ A ≠ 0 → ∃ x ∈ ℝ A ⁢ x = 1