Metamath Proof Explorer


Theorem ax12inda

Description: Induction step for constructing a substitution instance of ax-c15 without using ax-c15 . Quantification case. (When z and y are distinct, ax12inda2 may be used instead to avoid the dummy variable w in the proof.) (Contributed by NM, 24-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ax12inda.1 ¬xx=wx=wφxx=wφ
Assertion ax12inda ¬xx=yx=yzφxx=yzφ

Proof

Step Hyp Ref Expression
1 ax12inda.1 ¬xx=wx=wφxx=wφ
2 ax6ev ww=y
3 1 ax12inda2 ¬xx=wx=wzφxx=wzφ
4 dveeq2-o ¬xx=yw=yxw=y
5 4 imp ¬xx=yw=yxw=y
6 hba1-o xw=yxxw=y
7 equequ2 w=yx=wx=y
8 7 sps-o xw=yx=wx=y
9 6 8 albidh xw=yxx=wxx=y
10 9 notbid xw=y¬xx=w¬xx=y
11 5 10 syl ¬xx=yw=y¬xx=w¬xx=y
12 7 adantl ¬xx=yw=yx=wx=y
13 8 imbi1d xw=yx=wzφx=yzφ
14 6 13 albidh xw=yxx=wzφxx=yzφ
15 5 14 syl ¬xx=yw=yxx=wzφxx=yzφ
16 15 imbi2d ¬xx=yw=yzφxx=wzφzφxx=yzφ
17 12 16 imbi12d ¬xx=yw=yx=wzφxx=wzφx=yzφxx=yzφ
18 11 17 imbi12d ¬xx=yw=y¬xx=wx=wzφxx=wzφ¬xx=yx=yzφxx=yzφ
19 3 18 mpbii ¬xx=yw=y¬xx=yx=yzφxx=yzφ
20 19 ex ¬xx=yw=y¬xx=yx=yzφxx=yzφ
21 20 exlimdv ¬xx=yww=y¬xx=yx=yzφxx=yzφ
22 2 21 mpi ¬xx=y¬xx=yx=yzφxx=yzφ
23 22 pm2.43i ¬xx=yx=yzφxx=yzφ