Metamath Proof Explorer


Theorem ax12indn

Description: Induction step for constructing a substitution instance of ax-c15 without using ax-c15 . Negation case. (Contributed by NM, 21-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ax12indn.1 ¬xx=yx=yφxx=yφ
Assertion ax12indn ¬xx=yx=y¬φxx=y¬φ

Proof

Step Hyp Ref Expression
1 ax12indn.1 ¬xx=yx=yφxx=yφ
2 19.8a x=y¬φxx=y¬φ
3 exanali xx=y¬φ¬xx=yφ
4 hbn1 ¬xx=yx¬xx=y
5 hbn1 ¬xx=yφx¬xx=yφ
6 con3 φxx=yφ¬xx=yφ¬φ
7 1 6 syl6 ¬xx=yx=y¬xx=yφ¬φ
8 7 com23 ¬xx=y¬xx=yφx=y¬φ
9 4 5 8 alrimdh ¬xx=y¬xx=yφxx=y¬φ
10 3 9 biimtrid ¬xx=yxx=y¬φxx=y¬φ
11 2 10 syl5 ¬xx=yx=y¬φxx=y¬φ
12 11 expd ¬xx=yx=y¬φxx=y¬φ