Metamath Proof Explorer


Theorem ax13ALT

Description: Alternate proof of ax13 from FOL, sp , and axc9 . (Contributed by NM, 21-Dec-2015) (Proof shortened by Wolf Lammen, 31-Jan-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ax13ALT ¬x=yy=zxy=z

Proof

Step Hyp Ref Expression
1 sp xx=yx=y
2 1 con3i ¬x=y¬xx=y
3 sp xx=zx=z
4 3 con3i ¬x=z¬xx=z
5 axc9 ¬xx=y¬xx=zy=zxy=z
6 2 4 5 syl2im ¬x=y¬x=zy=zxy=z
7 ax13b ¬x=yy=zxy=z¬x=y¬x=zy=zxy=z
8 6 7 mpbir ¬x=yy=zxy=z