Metamath Proof Explorer


Theorem ax13b

Description: An equivalence between two ways of expressing ax-13 . See the comment for ax-13 . (Contributed by NM, 2-May-2017) (Proof shortened by Wolf Lammen, 26-Feb-2018) (Revised by BJ, 15-Sep-2020)

Ref Expression
Assertion ax13b ¬ x = y y = z φ ¬ x = y ¬ x = z y = z φ

Proof

Step Hyp Ref Expression
1 ax-1 y = z φ ¬ x = z y = z φ
2 equeuclr y = z x = z x = y
3 2 con3rr3 ¬ x = y y = z ¬ x = z
4 3 imim1d ¬ x = y ¬ x = z y = z φ y = z y = z φ
5 pm2.43 y = z y = z φ y = z φ
6 4 5 syl6 ¬ x = y ¬ x = z y = z φ y = z φ
7 1 6 impbid2 ¬ x = y y = z φ ¬ x = z y = z φ
8 7 pm5.74i ¬ x = y y = z φ ¬ x = y ¬ x = z y = z φ