Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1 |
⊢ ( ( 𝑦 = 𝑧 → 𝜑 ) → ( ¬ 𝑥 = 𝑧 → ( 𝑦 = 𝑧 → 𝜑 ) ) ) |
2 |
|
equeuclr |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 = 𝑧 → 𝑥 = 𝑦 ) ) |
3 |
2
|
con3rr3 |
⊢ ( ¬ 𝑥 = 𝑦 → ( 𝑦 = 𝑧 → ¬ 𝑥 = 𝑧 ) ) |
4 |
3
|
imim1d |
⊢ ( ¬ 𝑥 = 𝑦 → ( ( ¬ 𝑥 = 𝑧 → ( 𝑦 = 𝑧 → 𝜑 ) ) → ( 𝑦 = 𝑧 → ( 𝑦 = 𝑧 → 𝜑 ) ) ) ) |
5 |
|
pm2.43 |
⊢ ( ( 𝑦 = 𝑧 → ( 𝑦 = 𝑧 → 𝜑 ) ) → ( 𝑦 = 𝑧 → 𝜑 ) ) |
6 |
4 5
|
syl6 |
⊢ ( ¬ 𝑥 = 𝑦 → ( ( ¬ 𝑥 = 𝑧 → ( 𝑦 = 𝑧 → 𝜑 ) ) → ( 𝑦 = 𝑧 → 𝜑 ) ) ) |
7 |
1 6
|
impbid2 |
⊢ ( ¬ 𝑥 = 𝑦 → ( ( 𝑦 = 𝑧 → 𝜑 ) ↔ ( ¬ 𝑥 = 𝑧 → ( 𝑦 = 𝑧 → 𝜑 ) ) ) ) |
8 |
7
|
pm5.74i |
⊢ ( ( ¬ 𝑥 = 𝑦 → ( 𝑦 = 𝑧 → 𝜑 ) ) ↔ ( ¬ 𝑥 = 𝑦 → ( ¬ 𝑥 = 𝑧 → ( 𝑦 = 𝑧 → 𝜑 ) ) ) ) |