Metamath Proof Explorer


Theorem ax13b

Description: An equivalence between two ways of expressing ax-13 . See the comment for ax-13 . (Contributed by NM, 2-May-2017) (Proof shortened by Wolf Lammen, 26-Feb-2018) (Revised by BJ, 15-Sep-2020)

Ref Expression
Assertion ax13b
|- ( ( -. x = y -> ( y = z -> ph ) ) <-> ( -. x = y -> ( -. x = z -> ( y = z -> ph ) ) ) )

Proof

Step Hyp Ref Expression
1 ax-1
 |-  ( ( y = z -> ph ) -> ( -. x = z -> ( y = z -> ph ) ) )
2 equeuclr
 |-  ( y = z -> ( x = z -> x = y ) )
3 2 con3rr3
 |-  ( -. x = y -> ( y = z -> -. x = z ) )
4 3 imim1d
 |-  ( -. x = y -> ( ( -. x = z -> ( y = z -> ph ) ) -> ( y = z -> ( y = z -> ph ) ) ) )
5 pm2.43
 |-  ( ( y = z -> ( y = z -> ph ) ) -> ( y = z -> ph ) )
6 4 5 syl6
 |-  ( -. x = y -> ( ( -. x = z -> ( y = z -> ph ) ) -> ( y = z -> ph ) ) )
7 1 6 impbid2
 |-  ( -. x = y -> ( ( y = z -> ph ) <-> ( -. x = z -> ( y = z -> ph ) ) ) )
8 7 pm5.74i
 |-  ( ( -. x = y -> ( y = z -> ph ) ) <-> ( -. x = y -> ( -. x = z -> ( y = z -> ph ) ) ) )