Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1 |
|- ( ( y = z -> ph ) -> ( -. x = z -> ( y = z -> ph ) ) ) |
2 |
|
equeuclr |
|- ( y = z -> ( x = z -> x = y ) ) |
3 |
2
|
con3rr3 |
|- ( -. x = y -> ( y = z -> -. x = z ) ) |
4 |
3
|
imim1d |
|- ( -. x = y -> ( ( -. x = z -> ( y = z -> ph ) ) -> ( y = z -> ( y = z -> ph ) ) ) ) |
5 |
|
pm2.43 |
|- ( ( y = z -> ( y = z -> ph ) ) -> ( y = z -> ph ) ) |
6 |
4 5
|
syl6 |
|- ( -. x = y -> ( ( -. x = z -> ( y = z -> ph ) ) -> ( y = z -> ph ) ) ) |
7 |
1 6
|
impbid2 |
|- ( -. x = y -> ( ( y = z -> ph ) <-> ( -. x = z -> ( y = z -> ph ) ) ) ) |
8 |
7
|
pm5.74i |
|- ( ( -. x = y -> ( y = z -> ph ) ) <-> ( -. x = y -> ( -. x = z -> ( y = z -> ph ) ) ) ) |