Metamath Proof Explorer


Theorem axaddass

Description: Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom 9 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass be used later. Instead, use addass . (Contributed by NM, 2-Sep-1995) (New usage is discouraged.)

Ref Expression
Assertion axaddass A B C A + B + C = A + B + C

Proof

Step Hyp Ref Expression
1 dfcnqs = 𝑹 × 𝑹 / E -1
2 addcnsrec x 𝑹 y 𝑹 z 𝑹 w 𝑹 x y E -1 + z w E -1 = x + 𝑹 z y + 𝑹 w E -1
3 addcnsrec z 𝑹 w 𝑹 v 𝑹 u 𝑹 z w E -1 + v u E -1 = z + 𝑹 v w + 𝑹 u E -1
4 addcnsrec x + 𝑹 z 𝑹 y + 𝑹 w 𝑹 v 𝑹 u 𝑹 x + 𝑹 z y + 𝑹 w E -1 + v u E -1 = x + 𝑹 z + 𝑹 v y + 𝑹 w + 𝑹 u E -1
5 addcnsrec x 𝑹 y 𝑹 z + 𝑹 v 𝑹 w + 𝑹 u 𝑹 x y E -1 + z + 𝑹 v w + 𝑹 u E -1 = x + 𝑹 z + 𝑹 v y + 𝑹 w + 𝑹 u E -1
6 addclsr x 𝑹 z 𝑹 x + 𝑹 z 𝑹
7 addclsr y 𝑹 w 𝑹 y + 𝑹 w 𝑹
8 6 7 anim12i x 𝑹 z 𝑹 y 𝑹 w 𝑹 x + 𝑹 z 𝑹 y + 𝑹 w 𝑹
9 8 an4s x 𝑹 y 𝑹 z 𝑹 w 𝑹 x + 𝑹 z 𝑹 y + 𝑹 w 𝑹
10 addclsr z 𝑹 v 𝑹 z + 𝑹 v 𝑹
11 addclsr w 𝑹 u 𝑹 w + 𝑹 u 𝑹
12 10 11 anim12i z 𝑹 v 𝑹 w 𝑹 u 𝑹 z + 𝑹 v 𝑹 w + 𝑹 u 𝑹
13 12 an4s z 𝑹 w 𝑹 v 𝑹 u 𝑹 z + 𝑹 v 𝑹 w + 𝑹 u 𝑹
14 addasssr x + 𝑹 z + 𝑹 v = x + 𝑹 z + 𝑹 v
15 addasssr y + 𝑹 w + 𝑹 u = y + 𝑹 w + 𝑹 u
16 1 2 3 4 5 9 13 14 15 ecovass A B C A + B + C = A + B + C