Metamath Proof Explorer


Theorem axc14

Description: Axiom ax-c14 is redundant if we assume ax-5 . Remark 9.6 in Megill p. 448 (p. 16 of the preprint), regarding axiom scheme C14'.

Note that w is a dummy variable introduced in the proof. Its purpose is to satisfy the distinct variable requirements of dveel2 and ax-5 . By the end of the proof it has vanished, and the final theorem has no distinct variable requirements. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 29-Jun-1995) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc14 ¬zz=x¬zz=yxyzxy

Proof

Step Hyp Ref Expression
1 hbn1 ¬zz=yz¬zz=y
2 dveel2 ¬zz=ywyzwy
3 1 2 hbim1 ¬zz=ywyz¬zz=ywy
4 elequ1 w=xwyxy
5 4 imbi2d w=x¬zz=ywy¬zz=yxy
6 3 5 dvelim ¬zz=x¬zz=yxyz¬zz=yxy
7 nfa1 zzz=y
8 7 nfn z¬zz=y
9 8 19.21 z¬zz=yxy¬zz=yzxy
10 6 9 imbitrdi ¬zz=x¬zz=yxy¬zz=yzxy
11 10 pm2.86d ¬zz=x¬zz=yxyzxy