Metamath Proof Explorer


Theorem axc16i

Description: Inference with axc16 as its conclusion. (Contributed by NM, 20-May-2008) (Proof modification is discouraged.) Usage of this theorem is discouraged because it depends on ax-13 . Use axc16 instead. (New usage is discouraged.)

Ref Expression
Hypotheses axc16i.1 x=zφψ
axc16i.2 ψxψ
Assertion axc16i xx=yφxφ

Proof

Step Hyp Ref Expression
1 axc16i.1 x=zφψ
2 axc16i.2 ψxψ
3 nfv zx=y
4 nfv xz=y
5 ax7 x=zx=yz=y
6 3 4 5 cbv3 xx=yzz=y
7 ax7 z=xz=yx=y
8 7 spimvw zz=yx=y
9 equcomi x=yy=x
10 equcomi z=yy=z
11 ax7 y=zy=xz=x
12 10 11 syl z=yy=xz=x
13 9 12 syl5com x=yz=yz=x
14 13 alimdv x=yzz=yzz=x
15 8 14 mpcom zz=yzz=x
16 equcomi z=xx=z
17 16 alimi zz=xzx=z
18 15 17 syl zz=yzx=z
19 1 biimpcd φx=zψ
20 19 alimdv φzx=zzψ
21 2 nf5i xψ
22 nfv zφ
23 1 biimprd x=zψφ
24 16 23 syl z=xψφ
25 21 22 24 cbv3 zψxφ
26 20 25 syl6com zx=zφxφ
27 6 18 26 3syl xx=yφxφ