Metamath Proof Explorer


Theorem axc5c4c711to11

Description: Rederivation of ax-11 from axc5c4c711 . Note that ax-11 is not required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc5c4c711to11 xyφyxφ

Proof

Step Hyp Ref Expression
1 ax-1 φyφφφ
2 1 2alimi xyφxyyφφφ
3 axc5c4c711toc7 ¬y¬y¬xyyφφφ¬xyyφφφ
4 3 con4i xyyφφφy¬y¬xyyφφφ
5 pm2.21 ¬xy¬xyyφφφxy¬xyyφφφφφyyφφφ
6 axc5c4c711 xy¬xyyφφφφφyyφφφyφφyφ
7 sp yφφ
8 6 7 syl6 xy¬xyyφφφφφyyφφφyφφφ
9 5 8 syl ¬xy¬xyyφφφyφφφ
10 9 alimi x¬xy¬xyyφφφxyφφφ
11 axc5c4c711toc7 ¬x¬xy¬xyyφφφy¬xyyφφφ
12 10 11 nsyl4 ¬y¬xyyφφφxyφφφ
13 12 alimi y¬y¬xyyφφφyxyφφφ
14 4 13 syl xyyφφφyxyφφφ
15 pm2.27 yφφyφφφφ
16 id φφ
17 15 16 mpg yφφφφ
18 17 2alimi yxyφφφyxφ
19 2 14 18 3syl xyφyxφ