Metamath Proof Explorer


Theorem axextprim

Description: ax-ext without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010)

Ref Expression
Assertion axextprim ¬x¬xyxzxzxyy=z

Proof

Step Hyp Ref Expression
1 axextnd xxyxzy=z
2 dfbi2 xyxzxyxzxzxy
3 2 imbi1i xyxzy=zxyxzxzxyy=z
4 impexp xyxzxzxyy=zxyxzxzxyy=z
5 3 4 bitri xyxzy=zxyxzxzxyy=z
6 5 exbii xxyxzy=zxxyxzxzxyy=z
7 df-ex xxyxzxzxyy=z¬x¬xyxzxzxyy=z
8 6 7 bitri xxyxzy=z¬x¬xyxzxzxyy=z
9 1 8 mpbi ¬x¬xyxzxzxyy=z