Metamath Proof Explorer


Theorem axhv0cl-zf

Description: Derive Axiom ax-hv0cl from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008) (New usage is discouraged.)

Ref Expression
Hypotheses axhil.1 U = + norm
axhil.2 U CHil OLD
Assertion axhv0cl-zf 0

Proof

Step Hyp Ref Expression
1 axhil.1 U = + norm
2 axhil.2 U CHil OLD
3 df-hba = BaseSet + norm
4 1 fveq2i BaseSet U = BaseSet + norm
5 3 4 eqtr4i = BaseSet U
6 df-h0v 0 = 0 vec + norm
7 1 fveq2i 0 vec U = 0 vec + norm
8 6 7 eqtr4i 0 = 0 vec U
9 5 8 hl0cl U CHil OLD 0
10 2 9 ax-mp 0